|成功案例 |联系我们
您现在的位置:官网首页 > 新闻资讯 > 行业新闻 >

2018年全年,近90%的人工智能公司处于亏损状态

作者: 发布时间:2019-07-23 11:15

  AI落地场景在不断增多,但赚钱依旧艰难。根据亿欧报告显示,2018年全年,近90%的人工智能公司处于亏损状态,而10%赚钱的企业基本是技术提供商。从谈概念、讲技术,到拼场景、抢落地,建立在大数据基础之上的人工智能,仍面临数据本身带来的挑战。

  “我们经常提及大数据,但事实上我们并不需要那么多的数据,AI未来一个趋势是小数据崛起。”在市北·GMIS 2019全球数据智能峰会上,斯坦福大学教授、Landing.ai创始人、CEO吴恩达表示。

  一个具体的案例是工厂手机屏幕划痕检测。目前不少是利用人眼来检测手机是否存在划痕,如果拥有100万个划痕手机,AI可以非常高效地识别手机划痕。但现实情况是没有任何工厂会有几百万不同划痕的手机,这个时候小样本学习(few shot learning),即利用较少的数据得出同样准确结论的人工智能,将有助于推动整个领域的发展。

  小样本学习的迫切性更在于落地过程面临的数据孤岛、数据隐私保护导致的数据割裂问题,让AI技术很难充分发挥价值。

  “和AI用于比赛需要上千万的图片训练不同,当AI深入行业我们看到数据往往是小数据和细碎的数据,也就是没有联通起来的数据,再先进的AI技术也很难用上。”国际人工智能学会理事长、香港科技大学教授、微众银行首席人工智能官杨强说道。

  今年5月,国家互联网信息办公室发布了《数据安全管理办法(征求意见稿)》,提出在中国境内利用网络开展数据、存储、传输、处理、使用等活动,以及数据安全的保护和监督管理意见。

  杨强认为“中国版GDPR”即将到来,数据隐私在走向严格化、全面化,这使得企业在实际应用中可以使用的数据维度和范围并不大。数据隐私保护的趋严,为人工智能技术升级提供了契机。

  面对AI落地难、盈利难问题,吴恩达则认为,在期待AI为企业带来红利之前,企业需要避免几个陷阱。首先AI技术会影响很多企业做业务的核心,所以选择项目是非常重要的,从小的项目开始,可以建立好的基础,同时帮团队获得动能。

  其次团队建设不能仅依靠明星工程师,而是要建立一个完善的、跨学科、跨职能的团队。同时不要期待AI立刻产生作用,而是要多次尝试,对AI发展的回报曲线进行合理预算。不要使用传统的流程评估人工智能项目,应该为AI项目团队设立合适的KPI和目标。

  “有关AI的应用越来越多了,但企业的AI转型并不是开发一个 APP这么简单,不要指望AI解决所有的问题,也不要指望AI项目一次性就成功。”吴恩达表示。

最新资讯: